NCL Website header
NCL Home > Documentation > Functions > General applied math, Statistics

dim_avg_wgt_n

Computes the weighted average of a variable's given dimension at all other dimensions.

Prototype

	function dim_avg_wgt_n (
		x       : numeric,  
		w   [*] : numeric,  
		opt [1] : integer,  
		dim [1] : integer   
	)

	return_val  :  float or double

Arguments

x

A variable of numeric type and any dimensionality. Missing values are indicated by the _FillValue attribute.

w

A one dimensional array of weights. The length must the same as the dim-th dimension of x

opt

A scalar: (a) opt=0 means compute the weighted average only if all values are not missing; (b) opt=1 means compute the weighted mean of all non-missing values; (c) opt>1 means to return the mean only if the number of non-missing values is greater-then or equal to opt.

dim

A scalar, the dimension of x of which to do the weighted average across.

Return value

The output will be double if x is double, and float otherwise.

The output dimensionality will be the same as all but the dim-th dimension of the input variable. The dimension rank of the input variable will be reduced by one.

Description

The dim_avg_wgt_n function computes the weighted average of all elements of the dim-th dimension for each index of the remaining dimensions.

Basically, the following is done:


    xAvg = SUM [x*w]/SUM[w]
The weighting is strictly positional. EG: If x@_FillValue=1e20, and the dim-th dimension is of size 5 and the values are (/3.7, 1e20, 14.3, 1e20, 7.1 /) with weights (/1,3,5,3,1/) then the result will be
      (3.7*1 + 14.3*5 + 7.1*1)/(1+5+1) = 11.757

Use the dim_avg_wgt_n_Wrap function if metadata retention is desired. The interface is identical.

See Also

dim_avg_wgt_n_Wrap, dim_avg_wgt_Wrap, dim_avg_n, dim_avg_wgt, avg, dim_median_n, dim_stddev_n, dim_num_n, dim_product_n, dim_rmsd_n, dim_rmvmean_n, dim_rmvmed_n, dim_standardize_n, dim_stat4_n, dim_stddev_n, dim_sum_n, dim_variance_n

Examples

Example 1

Let z(12,nlat,mlon) contain monthly means and with named dimensions "time", "lat" and "lon", respectively. Compute the weighted annual mean at each lat/lon point.

    wgt = (/0.08493151, 0.076712325, 0.08493151, 0.08219178 \  ; same size as dimension "time"
           ,0.08493151, 0.08219178 , 0.08493151, 0.08493151 \
           ,0.08219178, 0.08493151 , 0.08219178, 0.08493151 /)                             
    zAnn = dim_avg_wgt_n( z, wgt, 0, 0 )    ; ==> zAnn(nlat,mlon)

    ; Use dim_avg_wgt_n_Wrap if metadata retention is desired
    ; zAnn = dim_avg_wgt_n_Wrap( z, wgt, 0, 0 )    ; ==> zAnn(nlat,mlon)

Example 2

Let T(time,lev,lat,lon). Compute the weighted vertical average total at each time/lat/lon point.

    wgt  = (/50,50,100,100,100,50,25,10/)  ; same size as dimension "lev"

    Tavg = dim_avg_wgt_n( T, wgt, 0, 1 )   ; ==> Tavg(time,lat,lon)

    ; Use dim_avg_wgt_n_Wrap if metadata retention is desired
    ; Tavg = dim_avg_wgt_n_Wrap( T, wgt, 0, 1 )   ; ==> Tavg(time,lat,lon)